*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.*
> Ask questions to clarify use cases and constraints.
> Discuss assumptions.
Without an interviewer to address clarifying questions, we'll define some use cases and constraints.
### Use cases
#### We'll scope the problem to handle only the following use cases
* **User** searches for someone and sees the shortest path to the searched person
* **Service** has high availability
### Constraints and assumptions
#### State assumptions
* Traffic is not evenly distributed
* Some searches are more popular than others, while others are only executed once
* Graph data won't fit on a single machine
* Graph edges are unweighted
* 100 million users
* 50 friends per user average
* 1 billion friend searches per month
Exercise the use of more traditional systems - don't use graph-specific solutions such as [GraphQL](http://graphql.org/) or a graph database like [Neo4j](https://neo4j.com/)
#### Calculate usage
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.**
* 5 billion friend relationships
* 100 million users * 50 friends per user average
* 400 search requests per second
Handy conversion guide:
* 2.5 million seconds per month
* 1 request per second = 2.5 million requests per month
* 40 requests per second = 100 million requests per month
* 400 requests per second = 1 billion requests per month
## Step 2: Create a high level design
> Outline a high level design with all important components.
![Imgur](http://i.imgur.com/wxXyq2J.png)
## Step 3: Design core components
> Dive into details for each core component.
### Use case: User searches for someone and sees the shortest path to the searched person
**Clarify with your interviewer how much code you are expected to write**.
Without the constraint of millions of users (vertices) and billions of friend relationships (edges), we could solve this unweighted shortest path task with a general BFS approach:
We won't be able to fit all users on the same machine, we'll need to [shard](https://github.com/donnemartin/system-design-primer#sharding) users across **Person Servers** and access them with a **Lookup Service**.
* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server)
* Uses the **Lookup Service** to find the **Person Server** where the current user's info is stored
* Finds the appropriate **Person Server** to retrieve the current user's list of `friend_ids`
* Runs a BFS search using the current user as the `source` and the current user's `friend_ids` as the ids for each `adjacent_node`
* To get the `adjacent_node` from a given id:
* The **User Graph Service** will *again* need to communicate with the **Lookup Service** to determine which **Person Server** stores the`adjacent_node` matching the given id (potential for optimization)
**Clarify with your interviewer how much code you should be writing**.
**Note**: Error handling is excluded below for simplicity. Ask if you should code proper error handing.
State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design.
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each?
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter.
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) for main talking points, tradeoffs, and alternatives:
To address the constraint of 400 *average* read requests per second (higher at peak), person data can be served from a **Memory Cache** such as Redis or Memcached to reduce response times and to reduce traffic to downstream services. This could be especially useful for people who do multiple searches in succession and for people who are well-connected. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><ahref=https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know>1</a></sup>
* [Shard](https://github.com/donnemartin/system-design-primer#sharding) **Person Servers** by location to further improve this, as friends generally live closer to each other
* Do two BFS searches at the same time, one starting from the source, and one from the destination, then merge the two paths
* Start the BFS search from people with large numbers of friends, as they are more likely to reduce the number of [degrees of separation](https://en.wikipedia.org/wiki/Six_degrees_of_separation) between the current user and the search target
* Set a limit based on time or number of hops before asking the user if they want to continue searching, as searching could take a considerable amount of time in some cases
* Use a **Graph Database** such as [Neo4j](https://neo4j.com/) or a graph-specific query language such as [GraphQL](http://graphql.org/) (if there were no constraint preventing the use of **Graph Databases**)
## Additional talking points
> Additional topics to dive into, depending on the problem scope and time remaining.
* External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest)