Merge branch 'master' into add-twitter

This commit is contained in:
Chang Liu 2018-02-27 11:45:52 +08:00 committed by GitHub
commit 8744c03790
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 35 additions and 35 deletions

View File

@ -65,6 +65,7 @@ Translations to new languages are always welcome, especially if you can maintain
* Invite friends to review if possible. If desired, feel free to invite friends to help your original translation by letting them fork your repo, then merging their PRs. * Invite friends to review if possible. If desired, feel free to invite friends to help your original translation by letting them fork your repo, then merging their PRs.
* Add links to your translation at the top of every README*.md file. (For consistency, the link should be added in alphabetical order by ISO code, and the anchor text should be in the native language.) * Add links to your translation at the top of every README*.md file. (For consistency, the link should be added in alphabetical order by ISO code, and the anchor text should be in the native language.)
* When done, indicate on the PR that it's ready to be merged into the main repo. * When done, indicate on the PR that it's ready to be merged into the main repo.
* Once accepted, your PR will be squashed into a single commit into the `master` branch.
### Translation template credits ### Translation template credits

View File

@ -761,7 +761,7 @@ Layer 7 ロードバランサーは [アプリケーションレイヤー](#通
<p align="center"> <p align="center">
<img src="http://i.imgur.com/Xkm5CXz.png"> <img src="http://i.imgur.com/Xkm5CXz.png">
<br/> <br/>
<i><a href=https://www.youtube.com/watch?v=vg5onp8TU6Q>Source: Scaling up to your first 10 million users</a></i> <i><a href=https://www.youtube.com/watch?v=w95murBkYmU>Source: Scaling up to your first 10 million users</a></i>
</p> </p>
### リレーショナルデータベースマネジメントシステム (RDBMS) ### リレーショナルデータベースマネジメントシステム (RDBMS)
@ -827,7 +827,7 @@ SQLなどのリレーショナルデータベースはテーブルに整理さ
<p align="center"> <p align="center">
<img src="http://i.imgur.com/U3qV33e.png"> <img src="http://i.imgur.com/U3qV33e.png">
<br/> <br/>
<i><a href=https://www.youtube.com/watch?v=vg5onp8TU6Q>Source: Scaling up to your first 10 million users</a></i> <i><a href=https://www.youtube.com/watch?v=w95murBkYmU>Source: Scaling up to your first 10 million users</a></i>
</p> </p>
フェデレーション (もしくは機能分割化とも言う) はデータベースを機能ごとに分割する。例えば、モノリシックな単一データベースの代わりに三つのデータベースを持つことができます: **フォーラム****ユーザー** そして **プロダクト**です。各データベースへの書き込み読み取りのトラフィックが減ることで複製ラグも短くなります。より小さなデータベースを用いることで、メモリーに収まるデータが増えます。ローカルキャッシュに保存できる量が増えることで、キャッシュヒット率も上がります。単一の中央マスターが書き込みの処理をしなくても、並列で書き込みを処理することができ、スループットの向上が期待できます。 フェデレーション (もしくは機能分割化とも言う) はデータベースを機能ごとに分割する。例えば、モノリシックな単一データベースの代わりに三つのデータベースを持つことができます: **フォーラム****ユーザー** そして **プロダクト**です。各データベースへの書き込み読み取りのトラフィックが減ることで複製ラグも短くなります。より小さなデータベースを用いることで、メモリーに収まるデータが増えます。ローカルキャッシュに保存できる量が増えることで、キャッシュヒット率も上がります。単一の中央マスターが書き込みの処理をしなくても、並列で書き込みを処理することができ、スループットの向上が期待できます。
@ -841,7 +841,7 @@ SQLなどのリレーショナルデータベースはテーブルに整理さ
##### その他の参考資料、ページ: federation ##### その他の参考資料、ページ: federation
* [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=vg5onp8TU6Q) * [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=w95murBkYmU)
#### シャーディング #### シャーディング
@ -1077,7 +1077,7 @@ NoSQLに適するサンプルデータ:
##### その他の参考資料、ページ:  SQLもしくはNoSQL ##### その他の参考資料、ページ:  SQLもしくはNoSQL
* [最初の1000万ユーザーにスケールアップするために](https://www.youtube.com/watch?v=vg5onp8TU6Q) * [最初の1000万ユーザーにスケールアップするために](https://www.youtube.com/watch?v=w95murBkYmU)
* [SQLとNoSQLの違い](https://www.sitepoint.com/sql-vs-nosql-differences/) * [SQLとNoSQLの違い](https://www.sitepoint.com/sql-vs-nosql-differences/)
## キャッシュ ## キャッシュ

View File

@ -771,7 +771,7 @@ CDN 拉取是当第一个用户请求该资源时,从服务器上拉取资源
<p align="center"> <p align="center">
<img src="http://i.imgur.com/Xkm5CXz.png"> <img src="http://i.imgur.com/Xkm5CXz.png">
<br/> <br/>
<strong><a href="https://www.youtube.com/watch?v=vg5onp8TU6Q">资料来源:扩展你的用户数到第一个一千万</a></strong> <strong><a href="https://www.youtube.com/watch?v=w95murBkYmU">资料来源:扩展你的用户数到第一个一千万</a></strong>
</p> </p>
### 关系型数据库管理系统RDBMS ### 关系型数据库管理系统RDBMS
@ -842,7 +842,7 @@ CDN 拉取是当第一个用户请求该资源时,从服务器上拉取资源
<p align="center"> <p align="center">
<img src="http://i.imgur.com/U3qV33e.png"> <img src="http://i.imgur.com/U3qV33e.png">
<br/> <br/>
<strong><a href="https://www.youtube.com/watch?v=vg5onp8TU6Q">资料来源:扩展你的用户数到第一个一千万</a></strong> <strong><a href="https://www.youtube.com/watch?v=w95murBkYmU">资料来源:扩展你的用户数到第一个一千万</a></strong>
</p> </p>
联合(或按功能划分)将数据库按对应功能分割。例如,你可以有三个数据库:**论坛**、**用户**和**产品**,而不仅是一个单体数据库,从而减少每个数据库的读取和写入流量,减少复制延迟。较小的数据库意味着更多适合放入内存的数据,进而意味着更高的缓存命中几率。没有只能串行写入的中心化主库,你可以并行写入,提高负载能力。 联合(或按功能划分)将数据库按对应功能分割。例如,你可以有三个数据库:**论坛**、**用户**和**产品**,而不仅是一个单体数据库,从而减少每个数据库的读取和写入流量,减少复制延迟。较小的数据库意味着更多适合放入内存的数据,进而意味着更高的缓存命中几率。没有只能串行写入的中心化主库,你可以并行写入,提高负载能力。
@ -857,7 +857,7 @@ CDN 拉取是当第一个用户请求该资源时,从服务器上拉取资源
##### 来源及延伸阅读:联合 ##### 来源及延伸阅读:联合
- [扩展你的用户数到第一个一千万](https://www.youtube.com/watch?v=vg5onp8TU6Q) - [扩展你的用户数到第一个一千万](https://www.youtube.com/watch?v=w95murBkYmU)
#### 分片 #### 分片
@ -1092,7 +1092,7 @@ Google 发布了第一个列型存储数据库 [Bigtable](http://www.read.seas.h
##### 来源及延伸阅读SQL 或 NoSQL ##### 来源及延伸阅读SQL 或 NoSQL
- [扩展你的用户数到第一个千万](https://www.youtube.com/watch?v=vg5onp8TU6Q) - [扩展你的用户数到第一个千万](https://www.youtube.com/watch?v=w95murBkYmU)
- [SQL 和 NoSQL 的不同](https://www.sitepoint.com/sql-vs-nosql-differences/) - [SQL 和 NoSQL 的不同](https://www.sitepoint.com/sql-vs-nosql-differences/)
## 缓存 ## 缓存

View File

@ -1,4 +1,4 @@
*[English](README.md) ∙ [日本語](README-ja.md) ∙ [简体中文](README-zh-Hans.md) | [Brazilian Portuguese](https://github.com/donnemartin/system-design-primer/issues/40) ∙ [Italian](https://github.com/donnemartin/system-design-primer/issues/104) ∙ [Korean](https://github.com/donnemartin/system-design-primer/issues/102) ∙ [Persian](https://github.com/donnemartin/system-design-primer/issues/110) ∙ [Polish](https://github.com/donnemartin/system-design-primer/issues/68) ∙ [Russian](https://github.com/donnemartin/system-design-primer/issues/87) ∙ [Traditional Chinese](https://github.com/donnemartin/system-design-primer/issues/88) ∙ [Turkish](https://github.com/donnemartin/system-design-primer/issues/39) | [Add Translation](https://github.com/donnemartin/system-design-primer/issues/28)* *[English](README.md) ∙ [日本語](README-ja.md) ∙ [简体中文](README-zh-Hans.md) | [Brazilian Portuguese](https://github.com/donnemartin/system-design-primer/issues/40) ∙ [Italian](https://github.com/donnemartin/system-design-primer/issues/104) ∙ [Korean](https://github.com/donnemartin/system-design-primer/issues/102) ∙ [Persian](https://github.com/donnemartin/system-design-primer/issues/110) ∙ [Polish](https://github.com/donnemartin/system-design-primer/issues/68) ∙ [Russian](https://github.com/donnemartin/system-design-primer/issues/87) ∙ [Traditional Chinese](https://github.com/donnemartin/system-design-primer/issues/88) ∙ [Turkish](https://github.com/donnemartin/system-design-primer/issues/39) ∙ [Vietnamese](https://github.com/donnemartin/system-design-primer/issues/127) | [Add Translation](https://github.com/donnemartin/system-design-primer/issues/28)*
# The System Design Primer # The System Design Primer
@ -556,7 +556,7 @@ Services such as [CloudFlare](https://www.cloudflare.com/dns/) and [Route 53](ht
### Disadvantage(s): DNS ### Disadvantage(s): DNS
* Accessing a DNS server introduces a slight delay, although mitigated by caching described above. * Accessing a DNS server introduces a slight delay, although mitigated by caching described above.
* DNS server management could be complex, although they are generally managed by [governments, ISPs, and large companies](http://superuser.com/questions/472695/who-controls-the-dns-servers/472729). * DNS server management could be complex and is generally managed by [governments, ISPs, and large companies](http://superuser.com/questions/472695/who-controls-the-dns-servers/472729).
* DNS services have recently come under [DDoS attack](http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/), preventing users from accessing websites such as Twitter without knowing Twitter's IP address(es). * DNS services have recently come under [DDoS attack](http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/), preventing users from accessing websites such as Twitter without knowing Twitter's IP address(es).
### Source(s) and further reading ### Source(s) and further reading
@ -727,9 +727,7 @@ Additional benefits include:
<i><a href=http://lethain.com/introduction-to-architecting-systems-for-scale/#platform_layer>Source: Intro to architecting systems for scale</a></i> <i><a href=http://lethain.com/introduction-to-architecting-systems-for-scale/#platform_layer>Source: Intro to architecting systems for scale</a></i>
</p> </p>
Separating out the web layer from the application layer (also known as platform layer) allows you to scale and configure both layers independently. Adding a new API results in adding application servers without necessarily adding additional web servers. Separating out the web layer from the application layer (also known as platform layer) allows you to scale and configure both layers independently. Adding a new API results in adding application servers without necessarily adding additional web servers. The **single responsibility principle** advocates for small and autonomous services that work together. Small teams with small services can plan more aggressively for rapid growth.
The **single responsibility principle** advocates for small and autonomous services that work together. Small teams with small services can plan more aggressively for rapid growth.
Workers in the application layer also help enable [asynchronism](#asynchronism). Workers in the application layer also help enable [asynchronism](#asynchronism).
@ -761,7 +759,7 @@ Systems such as [Consul](https://www.consul.io/docs/index.html), [Etcd](https://
<p align="center"> <p align="center">
<img src="http://i.imgur.com/Xkm5CXz.png"> <img src="http://i.imgur.com/Xkm5CXz.png">
<br/> <br/>
<i><a href=https://www.youtube.com/watch?v=vg5onp8TU6Q>Source: Scaling up to your first 10 million users</a></i> <i><a href=https://www.youtube.com/watch?v=w95murBkYmU>Source: Scaling up to your first 10 million users</a></i>
</p> </p>
### Relational database management system (RDBMS) ### Relational database management system (RDBMS)
@ -827,7 +825,7 @@ Both masters serve reads and writes and coordinate with each other on writes. I
<p align="center"> <p align="center">
<img src="http://i.imgur.com/U3qV33e.png"> <img src="http://i.imgur.com/U3qV33e.png">
<br/> <br/>
<i><a href=https://www.youtube.com/watch?v=vg5onp8TU6Q>Source: Scaling up to your first 10 million users</a></i> <i><a href=https://www.youtube.com/watch?v=w95murBkYmU>Source: Scaling up to your first 10 million users</a></i>
</p> </p>
Federation (or functional partitioning) splits up databases by function. For example, instead of a single, monolithic database, you could have three databases: **forums**, **users**, and **products**, resulting in less read and write traffic to each database and therefore less replication lag. Smaller databases result in more data that can fit in memory, which in turn results in more cache hits due to improved cache locality. With no single central master serializing writes you can write in parallel, increasing throughput. Federation (or functional partitioning) splits up databases by function. For example, instead of a single, monolithic database, you could have three databases: **forums**, **users**, and **products**, resulting in less read and write traffic to each database and therefore less replication lag. Smaller databases result in more data that can fit in memory, which in turn results in more cache hits due to improved cache locality. With no single central master serializing writes you can write in parallel, increasing throughput.
@ -841,7 +839,7 @@ Federation (or functional partitioning) splits up databases by function. For ex
##### Source(s) and further reading: federation ##### Source(s) and further reading: federation
* [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=vg5onp8TU6Q) * [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=w95murBkYmU)
#### Sharding #### Sharding
@ -1077,7 +1075,7 @@ Sample data well-suited for NoSQL:
##### Source(s) and further reading: SQL or NoSQL ##### Source(s) and further reading: SQL or NoSQL
* [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=vg5onp8TU6Q) * [Scaling up to your first 10 million users](https://www.youtube.com/watch?v=w95murBkYmU)
* [SQL vs NoSQL differences](https://www.sitepoint.com/sql-vs-nosql-differences/) * [SQL vs NoSQL differences](https://www.sitepoint.com/sql-vs-nosql-differences/)
## Cache ## Cache
@ -1259,8 +1257,8 @@ Refresh-ahead can result in reduced latency vs read-through if the cache can acc
### Disadvantage(s): cache ### Disadvantage(s): cache
* Need to maintain consistency between caches and the source of truth such as the database through [cache invalidation](https://en.wikipedia.org/wiki/Cache_algorithms). * Need to maintain consistency between caches and the source of truth such as the database through [cache invalidation](https://en.wikipedia.org/wiki/Cache_algorithms).
* Need to make application changes such as adding Redis or memcached.
* Cache invalidation is a difficult problem, there is additional complexity associated with when to update the cache. * Cache invalidation is a difficult problem, there is additional complexity associated with when to update the cache.
* Need to make application changes such as adding Redis or memcached.
### Source(s) and further reading ### Source(s) and further reading
@ -1677,9 +1675,10 @@ Handy metrics based on numbers above:
| Google | [Google architecture](http://highscalability.com/google-architecture) | | Google | [Google architecture](http://highscalability.com/google-architecture) |
| Instagram | [14 million users, terabytes of photos](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html)<br/>[What powers Instagram](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) | | Instagram | [14 million users, terabytes of photos](http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html)<br/>[What powers Instagram](http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances) |
| Justin.tv | [Justin.Tv's live video broadcasting architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) | | Justin.tv | [Justin.Tv's live video broadcasting architecture](http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html) |
| Facebook | [Scaling memcached at Facebook](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/key-value/fb-memcached-nsdi-2013.pdf)<br/>[TAO: Facebooks distributed data store for the social graph](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf)<br/>[Facebooks photo storage](https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf) | | Facebook | [Scaling memcached at Facebook](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/key-value/fb-memcached-nsdi-2013.pdf)<br/>[TAO: Facebooks distributed data store for the social graph](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf)<br/>[Facebooks photo storage](https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf)<br/>[How Facebook Live Streams To 800,000 Simultaneous Viewers](http://highscalability.com/blog/2016/6/27/how-facebook-live-streams-to-800000-simultaneous-viewers.html) |
| Flickr | [Flickr architecture](http://highscalability.com/flickr-architecture) | | Flickr | [Flickr architecture](http://highscalability.com/flickr-architecture) |
| Mailbox | [From 0 to one million users in 6 weeks](http://highscalability.com/blog/2013/6/18/scaling-mailbox-from-0-to-one-million-users-in-6-weeks-and-1.html) | | Mailbox | [From 0 to one million users in 6 weeks](http://highscalability.com/blog/2013/6/18/scaling-mailbox-from-0-to-one-million-users-in-6-weeks-and-1.html) |
| Netflix | [Netflix: What Happens When You Press Play?](http://highscalability.com/blog/2017/12/11/netflix-what-happens-when-you-press-play.html) |
| Pinterest | [From 0 To 10s of billions of page views a month](http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html)<br/>[18 million visitors, 10x growth, 12 employees](http://highscalability.com/blog/2012/5/21/pinterest-architecture-update-18-million-visitors-10x-growth.html) | | Pinterest | [From 0 To 10s of billions of page views a month](http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html)<br/>[18 million visitors, 10x growth, 12 employees](http://highscalability.com/blog/2012/5/21/pinterest-architecture-update-18-million-visitors-10x-growth.html) |
| Playfish | [50 million monthly users and growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) | | Playfish | [50 million monthly users and growing](http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html) |
| PlentyOfFish | [PlentyOfFish architecture](http://highscalability.com/plentyoffish-architecture) | | PlentyOfFish | [PlentyOfFish architecture](http://highscalability.com/plentyoffish-architecture) |
@ -1688,7 +1687,7 @@ Handy metrics based on numbers above:
| TripAdvisor | [40M visitors, 200M dynamic page views, 30TB data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) | | TripAdvisor | [40M visitors, 200M dynamic page views, 30TB data](http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html) |
| Tumblr | [15 billion page views a month](http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html) | | Tumblr | [15 billion page views a month](http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html) |
| Twitter | [Making Twitter 10000 percent faster](http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster)<br/>[Storing 250 million tweets a day using MySQL](http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html)<br/>[150M active users, 300K QPS, a 22 MB/S firehose](http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html)<br/>[Timelines at scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability)<br/>[Big and small data at Twitter](https://www.youtube.com/watch?v=5cKTP36HVgI)<br/>[Operations at Twitter: scaling beyond 100 million users](https://www.youtube.com/watch?v=z8LU0Cj6BOU)<br/>[How Twitter Handles 3,000 Images Per Second](http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html) | | Twitter | [Making Twitter 10000 percent faster](http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster)<br/>[Storing 250 million tweets a day using MySQL](http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html)<br/>[150M active users, 300K QPS, a 22 MB/S firehose](http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html)<br/>[Timelines at scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability)<br/>[Big and small data at Twitter](https://www.youtube.com/watch?v=5cKTP36HVgI)<br/>[Operations at Twitter: scaling beyond 100 million users](https://www.youtube.com/watch?v=z8LU0Cj6BOU)<br/>[How Twitter Handles 3,000 Images Per Second](http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html) |
| Uber | [How Uber scales their real-time market platform](http://highscalability.com/blog/2015/9/14/how-uber-scales-their-real-time-market-platform.html) | | Uber | [How Uber scales their real-time market platform](http://highscalability.com/blog/2015/9/14/how-uber-scales-their-real-time-market-platform.html)<br/>[Lessons Learned From Scaling Uber To 2000 Engineers, 1000 Services, And 8000 Git Repositories](http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html) |
| WhatsApp | [The WhatsApp architecture Facebook bought for $19 billion](http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html) | | WhatsApp | [The WhatsApp architecture Facebook bought for $19 billion](http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html) |
| YouTube | [YouTube scalability](https://www.youtube.com/watch?v=w5WVu624fY8)<br/>[YouTube architecture](http://highscalability.com/youtube-architecture) | | YouTube | [YouTube scalability](https://www.youtube.com/watch?v=w5WVu624fY8)<br/>[YouTube architecture](http://highscalability.com/youtube-architecture) |
@ -1742,9 +1741,9 @@ Handy metrics based on numbers above:
#### Source(s) and further reading #### Source(s) and further reading
* [kilimchoi/engineering-blogs](https://github.com/kilimchoi/engineering-blogs) Looking to add a blog? To avoid duplicating work, consider adding your company blog to the following repo:
The list of blogs here will be kept relatively small and [kilimchoi/engineering-blogs](https://github.com/kilimchoi/engineering-blogs) will contain the larger list to avoid duplicating work. Do consider adding your company blog to the engineering-blogs repo instead. * [kilimchoi/engineering-blogs](https://github.com/kilimchoi/engineering-blogs)
## Under development ## Under development

View File

@ -247,7 +247,7 @@ To handle the heavy request load and the large amount of memory needed, we'll sc
### SQL scaling patterns ### SQL scaling patterns
* [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave) * [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave-replication)
* [Federation](https://github.com/donnemartin/system-design-primer#federation) * [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)

View File

@ -344,7 +344,7 @@ We can further separate out our [**Application Servers**](https://github.com/don
### SQL scaling patterns ### SQL scaling patterns
* [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave) * [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave-replication)
* [Federation](https://github.com/donnemartin/system-design-primer#federation) * [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)

View File

@ -290,7 +290,7 @@ Below are further optimizations:
### SQL scaling patterns ### SQL scaling patterns
* [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave) * [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave-replication)
* [Federation](https://github.com/donnemartin/system-design-primer#federation) * [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)

View File

@ -294,7 +294,7 @@ Below are a few other optimizations to the **Crawling Service**:
### SQL scaling patterns ### SQL scaling patterns
* [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave) * [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave-replication)
* [Federation](https://github.com/donnemartin/system-design-primer#federation) * [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)